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1. DATA 

Image Data 

 

The two cost effective data sets available for interpretation and mapping are Landsat Thematic 

Mapper (TM) and National Agriculture Imagery Program (NAIP) imagery. Both of these 

datasets have properties that add value to mapping work, and are available at no additional cost 

to the public.  

 

The Landsat constellation of satellites has been in orbit since 1972 and has a long history of use 

in vegetation mapping and monitoring. The TM is considered a moderate resolution sensor, with 

30 meter pixels, but it has high radiometric resolution allowing for increased discrimination 

between vegetation types. The footprint of a Landsat scene covers nearly 100 square miles, 

thereby making it effective for landscape-level mapping because it provides consistent spectral 

values over large areas.  

 

Imagery provided by NAIP yields a higher spatial resolution, using 1 meter pixels, yet lacks 

some of the radiometric characteristics provided by TM data. The NAIP imagery consists of just 

4 bands of data, spanning the visible spectrum into the near-infrared (NIR). The main drawback 

of this imagery is that each image tile covers approximately 30 square miles and therefore 

radiometric readings can be less consistent across large landscapes. The polygon-based map 

units delineated from these data are very accurate as compared to what can be accomplished 

from Landsat alone, and the secondary statistics derived from NAIP are useful for detailed 

delineation of various cover types. 

 

In short, both Landsat TM, and NAIP imagery have useful properties for interpretation and 

mapping purposes. Landsat provides consistent and refined spectral values over large areas, and 

NAIP provides high spatial resolution for delineation, texture analysis, and visual interpretation. 

When used in combination these two image products complement each other very well, and 

provided the foundation for the production of the NPC VMap V14 Database. Below is a brief 

description of the image products used in this project. 

 

 Landsat Thematic Mapper imagery: A mid-summer 2011 image was selected to capture 

“peak greenness” vegetation prior to senescence. Landsat TM images are distributed with 30 

meter pixel resolution and seven bands of spectral information. We used bands 1, 2, 3, 4, 5, 

and 7 in this project. All TM images were orthorectified to the color infrared NAIP imagery, 

and radiance/reflectance corrected. The 30 meter pixel product was ultimately resampled to 

10 meters and used in combination with NAIP data for quantitative analysis.  
 

 National Agriculture Imagery Program data: NAIP imagery used in this project was also 

collected in 2011, and is provided with four spectral bands including the blue, green, red and 

near infrared (NIR) components. The original digital images were delivered with a 1 meter 

ground sample distance (GSD) and rectified to National Mapping Standards at the 1:24,000 

scale. This imagery was used in two distinct ways: 1) the original 1 meter resolution data were 

used for visual inspection and interpretation in the mapping process, 2) the high resolution 

data were resampled to 10 meter pixels and used with TM data for quantitative analysis.  
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Image Derivatives and Ancillary Data 

 

In addition to the values provided by the raw imagery, a variety of image derivatives and 

vegetation indices were computed from both datasets. The combination of the two image sources 

provides abundant spectral and texture-based information that is very useful for landcover 

mapping.  

Image derivatives computed from the TM data include: a tasseled cap (TC) transformation, the 

first three principal components (PCA) of the TM data, and the first three principal components 

calculated on the TC transformation.  

Derivatives of the NAIP imagery include: calculation of a normalized difference vegetation 

index (NDVI), quantification of intensity-hue-saturation (IHS), and the extraction of the first 

three principal components of the four band data. In addition to these spectral interpretations, 

two measures of image texture were computed for the four band NAIP image with a 5x5 pixel 

window. The first measure of texture accounts for the mean standard deviation within the 

analysis window, while the second measure records the minimum standard deviation within the 

analysis window. The mean texture is useful for delineating edges of patches and the minimum 

texture is useful for discriminating differences within patches.  Texture derivatives are generally 

useful for interpretations of roughness related to vegetation types, canopy cover, and tree size 

estimates. 

Ancillary datasets used to describe biophysical setting are also incorporated to better model the 

type, structure, distribution, and abundance of vegetation across the landscape. A 10 meter 

resolution digital elevation model (DEM), obtained from the National Elevation Dataset (NED) 

was used to characterize and quantify topography, and produce a variety of topographic 

derivatives that provide biophysical interpretations.  

All of the direct and derived classification variables used in the production of NPC VMap V14 

Database, are listed in Table 1. The various image, image derivatives, and topographically based 

products are used throughout the VMap production process.  
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Table 1. Image and topographic variables used to derive the NPC  VMap, V14 Database 

 

 

Image Input Image Description

MEANIHSC1 NAIP CIR intensity

MEANIHSC2 NAIP CIR hue

MEANIHSC3 NAIP CIR saturation

MEANIHSR1 NAIP RGB intensity

MEANIHSR2 NAIP RGB hue

MEANIHSR3 NIAP RGB saturation

MEANCNDVI NAIP CIR normalized difference vegetation index

MEANCPCA1 NAIP CIR 1st principal component

MEANCPCA2 NAIP CIR 2nd principal component

MEANCPCA3 NAIP CIR 3rd principal component

MEANNAIP1 NAIP band 1: red

MEANNAIP2 NAIP band 2: green

MEANNAIP3 NAIP band 3: blue

MEANNAIP4 NAIP band 4: near infrared

MEANTM1 LANDSAT TM band 1: blue

MEANTM2 LANDSAT TM band 2: green

MEANTM3 LANDSAT TM band 3: red

MEANTM4 LANDSAT TM band 4: near infrared

MEANTM5 LANDSAT TM band 5: mid infrared

MEANTM6 LANDSAT TM band 7: mid infrared

MEANTNDVI LANDSAT TM normalized difference vegetation index

MEANTPCA1 LANDSAT TM 1st principal component

MEANTPCA2 LANDSAT TM 2nd principal component

MEANTPCA3 LANDSAT TM 3rd principal component

MEANTC1 LANDSAT TM tassled cap transformation: brightness

MEANTC2 LANDSAT TM tassled cap transformation: greenness

MEANTC3 LANDSAT TM tassled cap transformation: wetness

MEANTCP1 LANDSAT TM 1st principal component of the tassled cap transformation

MEANTCP2 LANDSAT TM 2nd principal component of the tassled cap transformation

MEANTCP3 LANDSAT TM 3rd principal component of the tassled cap transformation

MEANTXTME NAIP mean texture within a 5x5 5m window

MEANTXTMI NAIP minimum texture within a 5x5 5m window

MEANCURV DEM derived curvature rescaled to 8 bit format

MEANCPRF DEM derived curvature profile rescaled to 8 bit format

MEANCPLN DEM derived curvature planform rescaled to 8 bit format

MEANELEV DEM derived elevation in feet rescaled to 8 bit format

MEANELRR DEM derived elevation relief ratio rescaled to 8 bit format

MEANSAEW DEM derived slope aspect sin transformation (e-w) rescaled to 8 bit format

MEANSANS DEM derived slope aspect cos transformation (n-s) rescaled to 8 bit format

MEANTRAD DEM derived topographic solar radiation rescaled to 8 bit format

MEANTRRI DEM derived terrain ruggedness index rescaled to 8 bit format
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2. MODELING UNIT CONSTRUCTION 

 

Model Areas 

To make the 30 meter Landsat TM and the 1 meter NAIP data useable for image processing, 

both sets of data were resampled to 10 meters using a cubic convolution procedure. At 10m 

resolution, datasets are still quite large, and to accommodate the capabilities of current USFS 

computers, discrete mapping areas were created. The individual mapping areas are referred to as 

map models, or simply models. Another advantage of creating smaller modeling units is that 

different vegetation types could be modeled more effectively as all types do not occur in the 

same proportions in all models.   Model delineations were based on the combination of sixth 

code watershed boundaries and the Nez Perce-Clearwater (NPC) administrative boundary. 

Specifically, the overall mapping boundary was established by the intersection of watershed 

boundaries and the NPC administrative boundary, where all watershed areas that intersected the 

NPC boundary were selected for mapping. This provided full coverage of the area within a 

reasonable distance from National Forest System (NFS) lands. The individual model areas were 

defined in a similar way, focusing on the interaction between Ranger District and watershed 

boundaries. In all, ten sub- models were created to cover the entire NPC, ranging in size from 

400,000 to 800,000 acres, with an average size of roughly 690,000 acres. The largest mapping 

area spans the Kelly Creek watershed. Final model area boundaries are shown in Figure 1. 
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Figure 1. Vegetation modeling units within the Nez Perce-Clearwater National Forests are 

labeled as M6001- M6010 and illustrated by heavy black lines.  

 

Image Segmentation  

Image segmentation is the process of combining pixels within digital images into spatially 

cohesive regions. These individual regions are called image objects and represent distinct areas 

within the image that depict elements of vegetation and other patterns on the landscape 

(McDonald et al. 2002). 

 

Image objects are inherently more data rich than individual pixels, and form the building blocks 

upon which image classifications are built (Haralick and Shapiro 1985, Ryerd and Woodcock 

1996). Ultimately, the raster-based image objects are converted to vector-based polygons with 

associated image statistics as attributes. The segmentation process is performed using a 

proprietary software package known as eCognition, and is based on the local variance structure 

within imagery and user defined parameters.  

 

The initial segmentation is completed on an individual map model basis. It is of a moderate 

spatial resolution, based on a defined scale parameter along with shape and spectral metrics. The 

segmentation is then classified into the basic VMap lifeform classes of 1) sparsely-vegetated, 2) 

nonforest herbaceous and shrub vegetation, 3) forest, 4) and water, using membership functions 

and/or nearest neighbor algorithms within the eCognition software. A classification-based 

segmentation is subsequently applied to each of the mapped lifeform classes. Specifically, 
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multiple polygons that constitute a lake will be merged into a single polygon representing the 

lake. Likewise, many small polygons representing rocky ridges will be allowed to grow into 

bigger polygons because distinctions between rock types are generally not considered important 

to maintain in a vegetation database. Polygons representing the nonforest vegetation will 

generally be re-segmented into smaller polygons to capture elements of detail that are important 

in rangeland communities. Conversely, polygons representing forest vegetation will be re-

segmented to yield larger units to allow for some variation within forest stands. Results of the 

classification-based segmentation yield the polygons of the NPC VMap V14 Database.   

 

Figure 2 illustrates results of image segmentation on the NPC  in sub-model M6002, displayed 

over 1m NAIP color infrared imagery. Distinctions between lifeform classes such as sparse 

vegetation, grass, water, and forest can easily be determined. Similarly, differences in forest 

canopy cover and reflectance are also clearly visible, and delineated by the segmentation 

process.  

 

 
 

Figure 2. Illustration of VMap V14 polygons in the Nez Perce-Clearwater National Forest 
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3. TRAINING DATA 
 

The quality of any remote sensing product is strongly related to the quality of the ground truth 

data associated with it. Ground or other reference data is used to build the relationships between 

the observed phenomena and the spectral and biophysical information derived from remotely 

sensed and ancillary data. Collectively, ground and other reference data are known as training 

data because they are used to construct algorithms that relate observations to quantified variables 

and are used to interpret and label previously unsampled areas within a study area.  Thus, they 

“train” the algorithm to distinguish between, and label the unknown areas within a modeling 

area.    

 

In the VMap process, image object-based polygons are the units within which training data are 

collected. Collection of training data is primarily ground-based sampling, and is supplemented 

with image interpretation when/where appropriate. For instance, data such as lifeform, 

dominance type, and tree canopy cover could be interpreted from the 1m NAIP if personnel are 

familiar with the area.  

 

Landscape Stratification 

 

One of the primary goals of field data collection is to capture the variability of the vegetation 

types that occur across the landscape. Based on previous approaches tested during the 

Beaverhead-Deerlodge, and Flathead  National Forests VMap Database production (Brown and 

Ahl, 2011, Ahl and Brown 2012) it was found that a landscape stratification based sample design 

that accounts for variation in climatic, geologic, vegetative, and topographic characteristics can 

be accomplished by modeling the interaction between basic lifeform and elevation classes across 

a study area.  Since many of the layers used to describe biophysical properties of the landscape 

are modeled from elevation values, the modeling process was simplified by focusing directly on 

elevation values as a primary component of the stratification. 

 

To begin, data from the National Elevation Dataset (NED) originally provided continuous 

elevation estimates rounded to the nearest foot, but this level of detail was difficult to work with. 

Therefore the dataset was reclassified into three classes, essentially representing low, medium, 

and high elevation landscape units. The Natural Breaks classification algorithm was used to 

parse the elevation histogram into the three specified classes, which is shown in the example 

below (Figure 3).  
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A) Elevation in feet 

B) Classification Algorithm 
C) Low, Medium, High 

Elevation Classes 

 

Figure 3. Classification of continuous elevation data using the natural breaks algorithm to 

produce three classes ranging from 1) 0 – 3,500, 2) 3,501 - 6,000) and 3) greater than 6,001 ft, 

shown in pink, green, and blue, respectively 

 

Further division of the landscape focused on the distribution of vegetation. While more complex 

datasets were considered (i.e.,  mapped distributions of geomorphic land types and their various 

associations (R1 LTA), regional geology, and Level 4 Ecoregion data layers)  a basic 

classification of forest versus non-forest lifeforms provided the most meaningful and straight-

forward interpretation. The four basic classes of lifeform established during the segmentation 

process were reduced into two categories describing the basic forest and non-forest lifeforms 

across the NPC.  

 

The final land unit stratification was completed by combining both the vertical and horizontal 

elements of the landscape. The vertical elements represented the low, moderate and high 

elevation classes, and the horizontal elements were composed of forest and non-forest vegetation 

types (Figure 4).  
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A) Lifeform with 2 classes B) Elevation with 3 classes C) ELE-LFM with 6 classes  

 

Figure 4. Development of the final landscape stratification dataset based on forest and non-

forest lifeforms and elevation zones. Two classes of A) lifeform were combined with three classes 

of B) elevation to create 6 unique combinations (strata) of vertical and horizontal landscape 

features. 

 

Sampling vegetation within the unique combinations of forest and non-forest types over a range 

of elevation classes ensures that the spectrum of expected environmental conditions in the NPC 

landscape is fully captured.  

 

Sampling within Strata 

 

Upon development of the biophysical strata composing the NPC model areas, the next stage of 

the VMap sampling strategy is to identify potential sites for field review. There are three 

essential considerations in the development of a proposed sample network. The first priority is an 

appropriately proportioned sampling distribution across the landscape. Second, it is desirable to 

collect as many high quality samples as possible. Third, the time and effort needed to access 

suggested sample sites must be balanced against the need to acquire a certain number of samples 

during the field season because spending excessive effort to visit a few remote sample sites is not 

as efficient as collecting more, but easier to obtain samples.  

 

To set up a spatially proportionate sample design, a systematic grid of points with 500 meter 

spacing across the entire study area was created, where each point represents a potential field 

review site. Each point was attributed with a vegetation model identification number, and 

relevant Strata code. The basic assumption is that if all potential sites are reviewed, a 

proportionate sample of landscape features and associated vegetation characteristics will be 

sampled. Given that it will not be possible to visit all sites, further stratification is necessary to 

derive a realistic proposed sample network that is reasonable in terms of space and time. 

 

As a first step towards reducing the potential sample points down to a reasonable number it was 

assumed that the existing roads & trails network will determine the primary access to proposed 

sites. Realizing the amount of time required to record sample data is limited, we applied a 1 km 

buffer (about 0.5 mile) buffer around the road network. The zone identified by the buffered 

network then represents potential areas within which vegetation modeling units, constrained by 



10 

 

Forest Service ownership that may be visited by a sample collection crew with a reasonable 

amount of effort. An example of this buffer network and final samples collected is given below 

for the NPC model in Figure 5. This illustration shows the stratified landscape, the buffered 

access network, and the locations where training data were collected for NPC VMap production. 

Following Figure 5 is Table 2, which summarizes the type and number of data that were 

collected during the field season. 

 

 
 

Figure 5. NPC stratified sample design and data collection location sites 
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Table 2. Summary of samples collected for NPC VMap Version 14 production. 

 

 
 

Nez Perce-Clearwater Vmap 2014 Sample Distribution

DTB_SAMP DTB All Quality CCV_SAMP CCV All Quality

8010 549 4001 547                      

8013 284 4002 1,047                   

8020 369 4003 2,521                   

8023 755 4004 2,870                   

8024 31 Total 6,985                   

8030 834

8033 48

8034 842 TSZ_SAMP TSZ All Quality

8040 49 4100 568                      

8043 75 4200 1,097                   

8044 23 4300 1,966                   

8050 696 4400 2,118                   

8053 189 4500 477                      

8054 27 Total 6,226                   

8060 168

8064 263

8070 177

8074 260 NF_SAMP NF All Quality

8080 7 3100 520

8083 20 3320 2

8090 215 3330 385

8094 299 Total 907                      

8110 110

8114 48

8120 7

8123 10

8133 5

8160 45

8170 2

8400 59

8500 20

8600 10

Total 6,496                  
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4. IMAGE CLASSIFICATION 

Labeling Algorithms 

The Federal Geographic Data Committee (FGDC) Vegetation Classification Standards (FGDC 

1997) establishes a hierarchy of existing vegetation classification with nine levels of definition. 

The top seven levels are primarily based on physiognomy. The two lower levels refer to 

vegetation alliance and association, and are based on floristic attributes. The USDA Forest 

Service has set the national direction for classification and mapping of existing vegetation to 

implement the FGDC standards, and to provide direction for classifying and mapping structural 

characteristics (Brohman and Bryant 2005). This direction applies to a variety of geographic 

extents and thematic resolutions characterized as map scale levels. The Northern Region 

Vegetation Mapping Program (VMap), and resulting existing vegetation database, is specifically 

designed to meet this national program direction at the mid-level. 

 

Attributing of VMap products is accomplished using a multi-step process. The image 

classification process begins with the segmentation procedure. Image-objects created during the 

segmentation routine are first labeled according to lifeform classes using algorithms within the 

eCognition software. This tool uses an hierarchical classification scheme, and for features that 

are fairly easy to discern from image statistics, such as 1) tree, 2) nonforest vegetation, 3) water, 

and 4) sparse vegetation, membership functions were used to properly label these cover types. 

Figure 6 is an example of how one of these functions is implemented in the software interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following segmentation and initial lifeform classification, a polygon layer with associated image 

and biophysical input statistics from each model area is exported. This data is then associated 

with the field collected training data and further analyzed with a data mining algorithm known as 

Random Forests (Breiman and Cutler, 2008). The algorithm is used with a custom built user 

interface to derive tree dominance type, tree canopy cover, and tree size classifications within the 

tree lifeform. Using a similar approach, grass and shrub types were defined from within the 

initially determined non-forest lifeform. 

 

Figure 6. Illustration of an eCognition 

membership function, where ‘tree’ samples 

are in the blue histogram, and ‘nontree’ 

sample data are represented by the black 

histogram for one of the image inputs. The 

histogram is used to create a membership 

function that excludes ‘tree’ at 65.5 for this 

input. A series of functions can be created 

for all image inputs that show separation 

and combined to create classified outputs.  

Tree 
Nontree 
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Tree canopy cover is defined as “cover from above”. This metric describes how much live 

canopy is present to intercept light/precipitation prior to its reaching the forest floor. This is 

measured as a percent and then divided into 4 classes: Low (10-25% cover), Moderate-Low (25-

40% cover), Moderate-High (40-60% cover), and High (60%+ cover).  

 

Tree size is mapped into four classes based on a canopy cover weighted average DBH.  The 

classes are: Seedling/Sapling (0-5” DBH), Small (5-10” DBH), Medium (10-15” DBH), and 

Large (15-20” DBH) and Very Large (20”+ DBH).            

 

Tree dominance is mapped as two different, but related, classifications based on a basal area 

weighted plurality; Dominance of 40% (DOM40) and Dominance of 60% (DOM60).  For more 

details about VMap dominance type, tree size, and tree canopy cover classes please refer to the 

Region 1 Multi-level Classification, Mapping, Inventory, and Analysis System (Berglund and 

others, 2009). 

 

Implementation of this classification approach yields five primary attributes that populate the 

polygon features of the database, consisting of lifeform, dominance type 40 and 60, tree canopy 

cover, and tree size class. 
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5. MAP PRODUCT REVIEW 

 

Updating for Disturbance 

 

There were quite a few fires that burned across the NPC in the time since image acquisition until 

product delivery.  In an attempt to help quantify this large disturbance within the database a 

remote sensing based fire severity estimate was conducted using pre- and post-fire Landsat 

imagery per the standards utilized by the Monitoring Trends in Burn Severity Program 

(www.mtbs.gov).   

 

Fire disturbed polygons were identified through a zonal majority function conducted between the 

database and the burn severity raster.  Each polygon with a majority burn severity class of 

Moderate-High or higher was labeled as “Transitional Forest” within the VMap database.  Any 

other lesser disturbance class was left with the original map class label.   

 

Map Product Review and Assessment 

As part of the review process, all mapping areas were visited during the field data collection 

process in the summer of 2012. While these data were used to parameterize the classification 

algorithm, the field observations of the analysts were further used to refine results of the 

automated classification process (Brown, 2012). 

 

After the review process a map accuracy assessment was conducted. Results of the assessment 

are presented separately in Numbered Report NRGG 15-01 (Brown, 2014). This report explains 

accuracy assessment concepts and describes results of the NPC VMap V14 Database.  

  

http://www.mtbs.gov/
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6. ENHANCED DATA 

In addition to the standard VMap database, a suite of additional products were created for the 

NPC. The first of those additional products was a summary of FIA-based attributes for each 

unique combination of forest dominance type, canopy cover, and size class attributes. 

Additionally, individual dominace type (DOM40) classification probability surfaces were 

generated for all relevant dominace types occurring within NPC. 

 

Individual Dominance Type Probability Surfaces 

 

Continuous surfaces of VMap dominance types were created for the NPC using the full suite of 

forest-based training data collected between 2012 and 2014. The likelihood of occurrence of 

each dominance type was modeled based on the distribution of said type’s training data versus 

the training data from all other types. 

 

For instance, to estimate the likely distribution of ponderosa pine across the landscape, training 

data representing this particular type were classified against training data from all other types 

combined. As such, a classification of ponderosa pine samples was placed in contrast to all 

samples of all other types combined to yield a continuous surface that represents the likelihood 

of being classified as ponderosa pine versus not being classified as ponderosa pine. Pictured in 

the following figures are representations of the individual dominance type distributions across 

the NPC landscape where the darkest shade of red suggests the highest likelihood of dominance 

for the specified type. As red fades towards orange, yellow, green and blue, the estimated 

likelihood of dominance decreases. 

 

 
Figure 7. Ponderosa pine, VMap DOM_MID_40 code = 8015 
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Figure 8. Douglas-fir, VMap DOM_MID_40 code = 8025 

 

Figure 9. Grand fir, VMap DOM_MID_40 code = 8035 
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Figure 10. Lodgepone pine, VMap DOM_MID_40 code = 8055 

 

Figure 11. Subalpine fir, VMap DOM_MID_40 code = 8065 
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Figure 12. Engelmann spruce, VMap DOM_MID_40 code = 8075 

 

Figure 13. Western redcedar, VMap DOM_MID_40 code = 8095 
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Figure 14. Hemlock SPP, VMap DOM_MID_40 code = 8115 
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